Advantage ICF PIB 219

2012 OBC MMAH Supplementary Standard SB-10

Product Information Bulletin

BULLETIN NO.	219
ISSUED:	February 18, 2014
REPLACES:	NEW

2012 OBC, MMAH Supplementary Standard SB-10

Page 1 of 2

The Advantage ICF System[®] is an energy efficient insulating concrete forming (ICF) system used consisting of a continuous layer of expanded polystyrene (EPS) insulation over the interior and exterior face of a solid concrete core. This bulletin summarizes energy efficiency design for buildings required to comply with 2012 Ontario Building Code, Division B, Part 12, **Resource Conservation and Environmental Integrity**.

2012 OBC, Article 12.2.1.1. Energy Efficiency Design Before January 1, 2017:

- 1) This article applies to construction for which a permit has been applied for before January 1, 2017.
- 2) Except as provided in Sentences (3) and (4), the energy efficiency of all buildings shall conform to MMAH Supplementary Standard SB-10, "Energy Efficiency Requirements".
- 3) Except as provided in Sentence (4), the energy efficiency of a *building* or part of a *building of residential occupancy* that is within the scope of Part 9 and is intended for occupancy on a continuing basis during the winter months shall,
 - a) meet the performance level that is equal to a rating of 80 or more when evaluated in accordance with NRCan "EnerGuide for New Houses: Administrative and Technical Procedures", or
 - b) conform to Chapters 1 and 2 of MMAH Supplementary Standard SB-I2, "Energy Efficiency of Housing".
- 4) This article does not apply to,
 - a) A farm building,
 - b) a building that does not use electrical power or fossil fuel,
 - c) a manufactured building described in Article 9.1.1.9., or
 - d) a seasonal recreational *building* described in Section 9.36. or 9.38.

2012 OBC, Sentence 12.2.1.1.(2) requires energy efficiency design of all buildings **except** buildings with residential occupancy within the scope of Part 9 and buildings as per Sentence 12.2.1.1.(4) to comply with MMAH Supplementary Standard SB-10, **Energy Efficiency Requirements**, using one of the following compliance options:

- a) Exceed by not less than 25% the energy efficiency levels attained by conforming to the 1997 MNECB.
- b) Exceed by not less than 5% the energy efficiency levels attained by conforming to ANSI/ASHRAE/IES 90.1.
- c) Achieve the energy efficiency levels attained by conforming to ANSI/ASHRAE/IES 90.1 and of MMAH SB-10, Division 2, Chapter 2. <u>Note:</u> Meeting this option will also meet the requirements of option b) above.
- d) Achieve the energy efficiency levels attained by conforming to the 2011 NECB and MMAH SB-10, Division 2, Chapter 3.

The table below provides modified ASHRAE 90.1 requirements from MMAH SB-10, Division 2, Chapter 2.

Table 1 – MMAH SB-10, Division 2, Chapter 2, Tables SB5.5-5 to SB5.5-7

Climate Zone	Mass Walls Above Grade				
	Nonresidential		Residential		
Zone	U-factor - Note 1	R-value - Note 2	U-factor - Note 1	R-value - Note 2	
5	0.080	13.3 c.i.	0.071	15.2 c.i.	
6	0.071	15.2 c.i.	0.060	20.0 c.i.	
7	0.060	20.0 c.i.	0.060	20.0 c.i.	

Table notes:

1. U-factor is the maximum overall heat transfer coefficient through the building component including the warm side and cold side air films in units of Btu/(h•ft²•°F) [multiply by 5.678 to convert to SI units of W/(m²•K)].

- R-value is the minimum thermal resistance in units of (ft²•hr•°F)/BTU for the insulation component in the assembly only [multiply by 0.176 to convert to SI units of (m²•K)/W].
- **3.** Continuous insulation (c.i.) is continuous across all structural members without thermal bridges other than fasteners and service openings.
- **4.** A mass wall is defined as a wall with a heat capacity (HC) exceeding 7 Btu/(ft²•°F). A 6" concrete core Advantage ICF System[®] wall has a HC of 13 Btu/(ft²•°F) based upon concrete specific heat of 0.18 Btu/(lbm•°F).

Quality · Service · Expertise

1-88-THINK EPS^(R) · www.advantageicf.com</sup>

2012 OBC, MMAH Supplementary Standard SB-10 Product Information Bulletin 219

Page 2 of 2

ASHRAE 90.1, clause 5.5.3 provides two methods of establishing prescriptive building envelope component compliance.

- 1. Minimum rated R-values of insulation for the thermal resistance of the added insulation in framing cavities and continuous insulation only. Specifications listed in Normative Appendix A for each class of construction shall be used to determine compliance.
- 2. Maximum U-factor; C-factor, or F-factor for the entire assembly. The values for typical construction assemblies listed in Normative Appendix A shall be used to determine compliance.

The requirements for wood-frame wall assemblies meeting the ASHRAE 90.1 for all Climatic Zones can be met by providing the minimum thermal insulation requirement as noted. PlastiSpan[®] or DuroFoam[®] insulation can be used to provide the required continuous insulation requirements for wood-frame wall assemblies in Table 1.

The following exception to clause 5.5.3 is also provided: <u>For assemblies significantly different from those in Appendix A</u>, calculations shall be performed in accordance with the procedures required in Appendix A. Appendix Section A9 permits calculation of the maximum U-factor for mass wall assemblies using the isothermal planes method.

Table 2 - Meeting 2012 OBC, MMAH SB-10 Requirements with Advantage ICF System

	Advantage ICF System Above Grade Wall		
Component			
	RSI	R-value	
Outside Air Film (above grade)	0.03	0.2	
Metal Siding	0.11	0.6	
EPS Thermal Insulation	1.87	10.6	
152 mm (6") Concrete Wall	0.06	0.3	
EPS Thermal Insulation	1.87	10.6	
Gypsum Wall Board, 13 mm (1/2")	0.08	0.4	
Inside Air Film	0.12	0.7	
Total RSI (R-value)	4.13	23.5	
U-factor	0.24	0.043	

Table notes:

 Overall R-value of a wall assembly built with the Advantage ICF System can be calculated using the isothermal planes method since there is a continuous layer of expanded polystyrene (EPS) insulation over the interior and exterior face of a solid concrete core with no thermal bridges.

2. The Advantage ICF System mass wall U-factor meets Table 1 requirements for Climate Zones 5 to 7.